The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy.

نویسندگان

  • G R Adams
  • F Haddad
چکیده

Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P < 0.05). Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

منابع مشابه

Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats.

Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that d...

متن کامل

IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes.

Insulin-like growth factor-1 (IGF-1) has been shown to induce skeletal muscle hypertrophy, to prevent the loss of muscle mass with ageing and to improve the muscle phenotype of dystrophic mice. We previously developed a model of IGF-1-induced hypertrophy of human myotubes, in which hypertrophy was not only characterized by an increase in myotube size and myosin content but also by an increased ...

متن کامل

Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle.

Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-med...

متن کامل

Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth.

Adult transgenic mice with muscle-specific overexpression of insulin-like growth factor (IGF)-I have enlarged skeletal muscles. In this study, we; 1) characterized the development of muscle hypertrophy with respect to fiber type, age, and sex; 2) determined the primary anabolic process responsible for development of hypertrophy; and 3) identified secondary effects of muscle hypertrophy on body ...

متن کامل

Insulin-like growth factor (IGF-I) induces myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal-muscle cell model.

Insulin-like growth factor-I (IGF-I) is an important autocrine/paracrine mediator of skeletal-muscle growth and development. To develop a definitive cultured cell model of skeletal-muscle hypertrophy, C2C12 cells were stably transfected with IGF-I and clonal lines developed and evaluated. Quantitative morphometric analysis showed that IGF-I-transfected myotubes had a larger area (2381+/-60 micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of applied physiology

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 1996